Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The concerted action of a positive charge and hydrogen bonds dynamically regulates the pKa of the nucleophilic cysteine in the NrdH-redoxin family.

Identifieur interne : 000596 ( Main/Exploration ); précédent : 000595; suivant : 000597

The concerted action of a positive charge and hydrogen bonds dynamically regulates the pKa of the nucleophilic cysteine in the NrdH-redoxin family.

Auteurs : Koen Van Laer [Belgique] ; Margarida Oliveira ; Khadija Wahni ; Joris Messens

Source :

RBID : pubmed:24243781

Descripteurs français

English descriptors

Abstract

NrdH-redoxins shuffle electrons from the NADPH pool in the cell to Class Ib ribonucleotide reductases, which in turn provide the precursors for DNA replication and repair. NrdH-redoxins have a CVQC active site motif and belong to the thioredoxin-fold protein family. As for other thioredoxin-fold proteins, the pK(a) of the nucleophilic cysteine of NrdH-redoxins is of particular interest since it affects the catalytic reaction rate of the enzymes. Recently, the pK(a) value of this cysteine in Corynebacterium glutamicum and Mycobacterium tuberculosis NrdH-redoxins were determined, but structural insights explaining the relatively low pK(a) remained elusive. We subjected C. glutamicum NrdH-redoxin to an extensive molecular dynamics simulation to expose the factors regulating the pK(a) of the nucleophilic cysteine. We found that the nucleophilic cysteine receives three hydrogen bonds from residues within the CVQC active site motif. Additionally, a fourth hydrogen bond with a lysine located N-terminal of the active site further lowers the cysteine pK(a). However, site-directed mutagenesis data show that the major contribution to the lowering of the cysteine pK(a) comes from the positive charge of the lysine and not from the additional Lys-Cys hydrogen bond. In 12% of the NrdH-redoxin family, this lysine is replaced by an arginine that also lowers the cysteine pK(a). All together, the four hydrogen bonds and the electrostatic effect of a lysine or an arginine located N-terminally of the active site dynamically regulate the pK(a) of the nucleophilic cysteine in NrdH-redoxins.

DOI: 10.1002/pro.2397
PubMed: 24243781
PubMed Central: PMC3926748


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The concerted action of a positive charge and hydrogen bonds dynamically regulates the pKa of the nucleophilic cysteine in the NrdH-redoxin family.</title>
<author>
<name sortKey="Van Laer, Koen" sort="Van Laer, Koen" uniqKey="Van Laer K" first="Koen" last="Van Laer">Koen Van Laer</name>
<affiliation wicri:level="3">
<nlm:affiliation>VIB Department of Structural Biology, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium; Brussels Center for Redox Biology, Brussels, Belgium.</nlm:affiliation>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>VIB Department of Structural Biology, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium; Brussels Center for Redox Biology, Brussels</wicri:regionArea>
<placeName>
<settlement type="city">Bruxelles</settlement>
<region nuts="2">Région de Bruxelles-Capitale</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Oliveira, Margarida" sort="Oliveira, Margarida" uniqKey="Oliveira M" first="Margarida" last="Oliveira">Margarida Oliveira</name>
</author>
<author>
<name sortKey="Wahni, Khadija" sort="Wahni, Khadija" uniqKey="Wahni K" first="Khadija" last="Wahni">Khadija Wahni</name>
</author>
<author>
<name sortKey="Messens, Joris" sort="Messens, Joris" uniqKey="Messens J" first="Joris" last="Messens">Joris Messens</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24243781</idno>
<idno type="pmid">24243781</idno>
<idno type="doi">10.1002/pro.2397</idno>
<idno type="pmc">PMC3926748</idno>
<idno type="wicri:Area/Main/Corpus">000687</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000687</idno>
<idno type="wicri:Area/Main/Curation">000687</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000687</idno>
<idno type="wicri:Area/Main/Exploration">000687</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The concerted action of a positive charge and hydrogen bonds dynamically regulates the pKa of the nucleophilic cysteine in the NrdH-redoxin family.</title>
<author>
<name sortKey="Van Laer, Koen" sort="Van Laer, Koen" uniqKey="Van Laer K" first="Koen" last="Van Laer">Koen Van Laer</name>
<affiliation wicri:level="3">
<nlm:affiliation>VIB Department of Structural Biology, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium; Brussels Center for Redox Biology, Brussels, Belgium.</nlm:affiliation>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>VIB Department of Structural Biology, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium; Brussels Center for Redox Biology, Brussels</wicri:regionArea>
<placeName>
<settlement type="city">Bruxelles</settlement>
<region nuts="2">Région de Bruxelles-Capitale</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Oliveira, Margarida" sort="Oliveira, Margarida" uniqKey="Oliveira M" first="Margarida" last="Oliveira">Margarida Oliveira</name>
</author>
<author>
<name sortKey="Wahni, Khadija" sort="Wahni, Khadija" uniqKey="Wahni K" first="Khadija" last="Wahni">Khadija Wahni</name>
</author>
<author>
<name sortKey="Messens, Joris" sort="Messens, Joris" uniqKey="Messens J" first="Joris" last="Messens">Joris Messens</name>
</author>
</analytic>
<series>
<title level="j">Protein science : a publication of the Protein Society</title>
<idno type="eISSN">1469-896X</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Binding Sites (MeSH)</term>
<term>Catalytic Domain (MeSH)</term>
<term>Cysteine (MeSH)</term>
<term>DNA Repair (genetics)</term>
<term>DNA Replication (genetics)</term>
<term>Escherichia coli Proteins (chemistry)</term>
<term>Escherichia coli Proteins (genetics)</term>
<term>Glutaredoxins (chemistry)</term>
<term>Hydrogen Bonding (MeSH)</term>
<term>Mycobacterium tuberculosis (chemistry)</term>
<term>Mycobacterium tuberculosis (genetics)</term>
<term>Mycobacterium tuberculosis (metabolism)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Protein Structure, Tertiary (MeSH)</term>
<term>Thioredoxins (chemistry)</term>
<term>Thioredoxins (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Cystéine (MeSH)</term>
<term>Domaine catalytique (MeSH)</term>
<term>Glutarédoxines (composition chimique)</term>
<term>Liaison hydrogène (MeSH)</term>
<term>Mycobacterium tuberculosis (composition chimique)</term>
<term>Mycobacterium tuberculosis (génétique)</term>
<term>Mycobacterium tuberculosis (métabolisme)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Protéines Escherichia coli (composition chimique)</term>
<term>Protéines Escherichia coli (génétique)</term>
<term>Réparation de l'ADN (génétique)</term>
<term>Réplication de l'ADN (génétique)</term>
<term>Sites de fixation (MeSH)</term>
<term>Structure tertiaire des protéines (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Thiorédoxines (composition chimique)</term>
<term>Thiorédoxines (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Escherichia coli Proteins</term>
<term>Glutaredoxins</term>
<term>Thioredoxins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Escherichia coli Proteins</term>
<term>Thioredoxins</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Cysteine</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Mycobacterium tuberculosis</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Glutarédoxines</term>
<term>Mycobacterium tuberculosis</term>
<term>Protéines Escherichia coli</term>
<term>Thiorédoxines</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>DNA Repair</term>
<term>DNA Replication</term>
<term>Mycobacterium tuberculosis</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Mycobacterium tuberculosis</term>
<term>Protéines Escherichia coli</term>
<term>Réparation de l'ADN</term>
<term>Réplication de l'ADN</term>
<term>Thiorédoxines</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Mycobacterium tuberculosis</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Mycobacterium tuberculosis</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Binding Sites</term>
<term>Catalytic Domain</term>
<term>Hydrogen Bonding</term>
<term>Oxidation-Reduction</term>
<term>Protein Structure, Tertiary</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cystéine</term>
<term>Domaine catalytique</term>
<term>Liaison hydrogène</term>
<term>Oxydoréduction</term>
<term>Sites de fixation</term>
<term>Structure tertiaire des protéines</term>
<term>Séquence d'acides aminés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">NrdH-redoxins shuffle electrons from the NADPH pool in the cell to Class Ib ribonucleotide reductases, which in turn provide the precursors for DNA replication and repair. NrdH-redoxins have a CVQC active site motif and belong to the thioredoxin-fold protein family. As for other thioredoxin-fold proteins, the pK(a) of the nucleophilic cysteine of NrdH-redoxins is of particular interest since it affects the catalytic reaction rate of the enzymes. Recently, the pK(a) value of this cysteine in Corynebacterium glutamicum and Mycobacterium tuberculosis NrdH-redoxins were determined, but structural insights explaining the relatively low pK(a) remained elusive. We subjected C. glutamicum NrdH-redoxin to an extensive molecular dynamics simulation to expose the factors regulating the pK(a) of the nucleophilic cysteine. We found that the nucleophilic cysteine receives three hydrogen bonds from residues within the CVQC active site motif. Additionally, a fourth hydrogen bond with a lysine located N-terminal of the active site further lowers the cysteine pK(a). However, site-directed mutagenesis data show that the major contribution to the lowering of the cysteine pK(a) comes from the positive charge of the lysine and not from the additional Lys-Cys hydrogen bond. In 12% of the NrdH-redoxin family, this lysine is replaced by an arginine that also lowers the cysteine pK(a). All together, the four hydrogen bonds and the electrostatic effect of a lysine or an arginine located N-terminally of the active site dynamically regulate the pK(a) of the nucleophilic cysteine in NrdH-redoxins.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24243781</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>09</Month>
<Day>29</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1469-896X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>23</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2014</Year>
<Month>Feb</Month>
</PubDate>
</JournalIssue>
<Title>Protein science : a publication of the Protein Society</Title>
<ISOAbbreviation>Protein Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>The concerted action of a positive charge and hydrogen bonds dynamically regulates the pKa of the nucleophilic cysteine in the NrdH-redoxin family.</ArticleTitle>
<Pagination>
<MedlinePgn>238-42</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/pro.2397</ELocationID>
<Abstract>
<AbstractText>NrdH-redoxins shuffle electrons from the NADPH pool in the cell to Class Ib ribonucleotide reductases, which in turn provide the precursors for DNA replication and repair. NrdH-redoxins have a CVQC active site motif and belong to the thioredoxin-fold protein family. As for other thioredoxin-fold proteins, the pK(a) of the nucleophilic cysteine of NrdH-redoxins is of particular interest since it affects the catalytic reaction rate of the enzymes. Recently, the pK(a) value of this cysteine in Corynebacterium glutamicum and Mycobacterium tuberculosis NrdH-redoxins were determined, but structural insights explaining the relatively low pK(a) remained elusive. We subjected C. glutamicum NrdH-redoxin to an extensive molecular dynamics simulation to expose the factors regulating the pK(a) of the nucleophilic cysteine. We found that the nucleophilic cysteine receives three hydrogen bonds from residues within the CVQC active site motif. Additionally, a fourth hydrogen bond with a lysine located N-terminal of the active site further lowers the cysteine pK(a). However, site-directed mutagenesis data show that the major contribution to the lowering of the cysteine pK(a) comes from the positive charge of the lysine and not from the additional Lys-Cys hydrogen bond. In 12% of the NrdH-redoxin family, this lysine is replaced by an arginine that also lowers the cysteine pK(a). All together, the four hydrogen bonds and the electrostatic effect of a lysine or an arginine located N-terminally of the active site dynamically regulate the pK(a) of the nucleophilic cysteine in NrdH-redoxins.</AbstractText>
<CopyrightInformation>© 2013 The Protein Society.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Van Laer</LastName>
<ForeName>Koen</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>VIB Department of Structural Biology, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium; Brussels Center for Redox Biology, Brussels, Belgium.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Oliveira</LastName>
<ForeName>Margarida</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wahni</LastName>
<ForeName>Khadija</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Messens</LastName>
<ForeName>Joris</ForeName>
<Initials>J</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>12</Month>
<Day>13</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Protein Sci</MedlineTA>
<NlmUniqueID>9211750</NlmUniqueID>
<ISSNLinking>0961-8368</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029968">Escherichia coli Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C107179">NrdH protein, E Coli</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>52500-60-4</RegistryNumber>
<NameOfSubstance UI="D013879">Thioredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>K848JZ4886</RegistryNumber>
<NameOfSubstance UI="D003545">Cysteine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001665" MajorTopicYN="N">Binding Sites</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020134" MajorTopicYN="N">Catalytic Domain</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003545" MajorTopicYN="N">Cysteine</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004260" MajorTopicYN="N">DNA Repair</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004261" MajorTopicYN="N">DNA Replication</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029968" MajorTopicYN="N">Escherichia coli Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006860" MajorTopicYN="N">Hydrogen Bonding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009169" MajorTopicYN="N">Mycobacterium tuberculosis</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017434" MajorTopicYN="N">Protein Structure, Tertiary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013879" MajorTopicYN="N">Thioredoxins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">NrdH-redoxin</Keyword>
<Keyword MajorTopicYN="N">cysteine reactivity</Keyword>
<Keyword MajorTopicYN="N">hydrogen bond</Keyword>
<Keyword MajorTopicYN="N">molecular dynamics</Keyword>
<Keyword MajorTopicYN="N">pKa</Keyword>
<Keyword MajorTopicYN="N">redox</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>11</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>11</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>11</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>11</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>9</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24243781</ArticleId>
<ArticleId IdType="doi">10.1002/pro.2397</ArticleId>
<ArticleId IdType="pmc">PMC3926748</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Biochemistry. 2006 Apr 18;45(15):4785-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16605247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Phys Chem B. 2006 Jan 12;110(1):557-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16471568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2010 Oct;192(19):4963-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20675493</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteins. 2011 Dec;79(12):3333-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22072518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2013 Jan 1;18(1):94-127</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22746677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2012 Oct 16;51(41):8189-207</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22966829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2013 Mar 15;288(11):7942-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23362277</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2012 Nov;86(4):787-804</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22970802</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2013 Jun 11;52(23):4056-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23675692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Sep 21;276(38):35836-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11441020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteins. 2004 May 15;55(3):613-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15103625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 1992 Mar;1(3):310-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1304339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Jul 18;272(29):18044-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9218434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1998 Jul 24;280(4):687-701</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9677297</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomol NMR. 1998 Jul;12(1):1-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9729785</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2009 May;11(5):1047-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19014315</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Belgique</li>
</country>
<region>
<li>Région de Bruxelles-Capitale</li>
</region>
<settlement>
<li>Bruxelles</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Messens, Joris" sort="Messens, Joris" uniqKey="Messens J" first="Joris" last="Messens">Joris Messens</name>
<name sortKey="Oliveira, Margarida" sort="Oliveira, Margarida" uniqKey="Oliveira M" first="Margarida" last="Oliveira">Margarida Oliveira</name>
<name sortKey="Wahni, Khadija" sort="Wahni, Khadija" uniqKey="Wahni K" first="Khadija" last="Wahni">Khadija Wahni</name>
</noCountry>
<country name="Belgique">
<region name="Région de Bruxelles-Capitale">
<name sortKey="Van Laer, Koen" sort="Van Laer, Koen" uniqKey="Van Laer K" first="Koen" last="Van Laer">Koen Van Laer</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000596 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000596 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24243781
   |texte=   The concerted action of a positive charge and hydrogen bonds dynamically regulates the pKa of the nucleophilic cysteine in the NrdH-redoxin family.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24243781" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020